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ARTICLE INFO ABSTRACT

Keywords: The purpose of this study was to develop an easy-wear capacitive belt sensor, examine its per-
Capacitive formance, and test the feasibility for differentiating posture-dependent respiration changes,
Wearable

consequently for monitoring of variable respiration patterns during real life activities.

Belt sensor Seven healthy adult males participated in this study. Respiration (at rest) data were collected

Noninvasive . s . L.
Respiration simultaneously from capacitive belt sensor and commercial sensor (BIOPAC MP150) for 3 min in
Posture each of the 6 different static postures representative of real-life activity postures: supine with

neutral head position, standing, sitting, side lying, supine with 45° cervical flexion, and supine
with 45° cervical extension.

From the collected data, 3 respiratory parameters including total respiration count (RC), peak to
peak interval time (PPI), and respiratory rate (RR) were analyzed. Correlation analysis was con-
ducted for all three of the parameters collected by the two sensors. The highest PPI values were
found in cervical extension supine posture and the lowest in side lying. RC and PPI patterns were
inversely related. The results of RR showed to have exactly the same pattern with RC; the highest
rate was during standing and the lowest in cervical extension supine. The RRs detected by our
sensor were within the normal range, confirming the performance and feasibility of our sensor.

As our sensor was able to detect posture-dependent respiration pattern differences, potential
application in sleep apnea monitoring, respiratory disease prevention, and early detection of
diagnostic symptoms has been confirmed.

1. Introduction

As healthcare and well-being are holding the limelight in the fourth industrial revolution era, developing light and efficient wearable
sensors for continuous monitoring of various health conditions and attempts to find ways to detect diseases earlier, prevent obesity, and
delay aging are gaining continuous attention from the medical and healthcare fields.

Respiratory activity being one of the vital signs is an important indicator of the basic health. Abnormalities in respiratory activity
parameters can lead to medical emergencies (Guan et al., 2018). Monitoring of respiratory pattern has long been acknowledged as a
significant identifier and a predictor of serious adverse events such as dyspnea, hypopnea, sleep apnea, and sudden death due to airway
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obstruction, which are also closely related with aging and obesity (Al-Khalidi, Saatchi, Burke, Elphick, & Tan, 2011; Lee et al., 2018;
Reyes, Reljin, Kong, Nam, & Chon, 2017).

Numerous studies have stated that tidal volume, minute ventilation, and respiratory rate are the basic markers for finding or pre-
dicting respiratory dysfunction (Houssein, Ge, Gastinger, Dumond, & Prioux, 2019; Schlesinger, 2015). Conventional and precise
method to measure respiratory function is by using a spirometer, usually in a sitting posture, but its drawbacks are the need to wear a
mouthpiece or a face mask, and a nose clip. Using optoelectronic plethysmography (OEP) to measure the changes in chest wall volume is
another accurate method. Studies that applied OEP methods used at least 45 to 66 reflective markers to analyze respiration in supine, 81
markers for lateral position, and installed 6 to 8 infrared cameras to capture the movements (Nozoe et al., 2014). Despite the accuracy of
OEP, the cumbersomeness of attaching and wearing dozens of markers for one experimental position can be the greatest disadvantage
for both the researcher and the subject. To resolve these unpracticality, researchers have attempted developing alternatives to measure
and estimate respiratory variables (Chhabra, 2015; Fekr, Radecka, & Zilic, 2015). One of our previous studies was also an attempt to
develop a simple and comfortable capacitance-based textile respiration belt sensor. The study was successful in monitoring and
analyzing the abdominal respiratory rate of healthy individuals in a sitting posture (Min, Yun, & Shin, 2014).

However, there is a need to consider that the human body has different postures at different times of the day and during different
types of activities which in turn produce different respiratory activity. For this, we designed this study to develop an advanced respi-
ration sensor and to test its performance in various daily-activity postures. As postures influence human respiratory activity, several
studies tried detecting the changes in breathing patterns and mechanics in different postures (Aliverti et al., 2001; Cesareo, Previtali,
Biffi, & Aliverti, 2018; Nozoe et al., 2014; Romei et al., 2010; Schellongowski et al., 2007; Sukul, Trefz, Kamysek, Schubert, & Miekisch,
2015).

A study by Nozoe et al. noted that their study was the first to show laterality of chest wall volume changes in lateral positions. They
reported that changing postures from supine to lateral positions affect respiratory mechanics; it can change the amount of pulmonary gas
exchange, ventilation to perfusion ratio, can cause expansion restrictions of the side contacting the floor, and increase the abdominal
pressure (Nozoe et al., 2014; Schellongowski et al., 2007). However, these studies were conducted with the patients with cardiopul-
monary, cardiovascular, cerebrovascular diseases, post-operation patients with pulmonary diseases, or in an intensive care unit setting
and used OEP, inertial measurement unit (IMU), or other heavy and professional costly devices. Aliverti et al. studied the regional chest
wall volume changes in the supine and prone positions in normal subjects (Aliverti et al., 2001), Romei et al. studied chest wall ki-
nematics in sitting to supine positions and reported that chest wall volumes are affected by positions with gradually increasing
contribution of the abdomen to tidal volume, and Cesareo et al. studied respiratory rate of healthy subjects in sitting and supine postures
(Cesareo et al., 2018; Romei et al., 2010). However, none of these studies included lateral postures and static standing. A study by Sukul
et al. included right and left side lying, sitting, standing, supine, and prone, but the results were only focused on compositions of exhaled
breath (Sukul et al., 2015).

Current sensing methods are more focused on realizing no stress to the user. Among many wearable sensing techniques, soft sensors
are known to be not restricting natural kinematics of human movement, but enabling long-term, comfortable monitoring of the wearer
(Hughes & Iida, 2018). Soft strain sensors are promising for wearable applications since they are flexible, can be worn over clothes, and
can determine pressure, oscillation, and displacement that occur during human movements (Hughes & ITida, 2018; Pegan et al., 2016).
For this reason, this study chose to develop a flexible belt-type soft strain sensor to monitor respiration and differentiate the breathing
patterns according to different postures.

Previous studies on wearable strain sensors for physiological measurement and monitoring were focused towards stretchable
capacitive, percolating, and piezo-resistive sensor types (Pegan et al., 2016). Intelligent textiles such as knitted strain sensor or
conductive thermoplastic fabric sensors developed in the form of a t-shirt or suites were also available. However, requiring the users to
wear additional tight clothing for detection of strain changes was a disadvantage (Hughes & lida, 2018). Among the mentioned,
capacitive sensors were found to exhibit high sensitivity for detecting human movements from as subtle as pulsatile pressure to dynamic
gross body movements and were considered applicable in various form factors (Li et al., 2016; Nie et al., 2010; Zens et al., 2015). In
addition, previous studies have confirmed that measuring capacitance for respiration signal and the possibility of estimating air volume
without straining the body were promising (Terazawa, Karita, Kumagai, & Sasaki, 2018).

Although belt-type sensors have been widely used for monitoring physical activity in clinical and lab-based settings, posture-specific
respiration pattern monitoring studies considering the changes in body postures during daily activities have not been studied with a
single capacitive belt sensor. Therefore in this study, an easy-wear belt-type capacitive sensor was developed and tested in comparison
with a commercial sensor for detecting posture-specific respiration differences based on 6 representative postures in young healthy
adults.

2. Method
2.1. Mechanism of capacitive belt sensor for respiration detection

To make an advanced version of our previous sensor, the newly developed capacitive belt sensor (CBS) in this study was designed
with a 10-bit resolution, wireless, and compact capacitance measurement board capable of simultaneous collection of data from 10
channels. CBS detects the changes in the chest circumference based on the resistance force generated against the belt during inhalation
and exhalation. This was based on parallel capacitance theory. Capacitance refers to the ability of an object to accumulate electric charge
in the unit of Farad (F). 1 F is equal to the capacitance charged at 1 C (C) when 1 V (V) is applied to capacitor. Parallel capacitance can be
calculated by the following equation (1).
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where, ¢ is the permittivity material between the plates, d refers to the distance between two plates, and A refers to the area of plates.
Fig. 1 below shows the system architecture of our proposed sensor. CBS measured respiration signal and the printed circuit board
(PCB) collected the respiration data at a sampling rate of 100 Hz using analog to digital converter (ADC). The collected data were then
transferred to the monitoring application on a PC. Our monitoring application had a real-time display and saving functions. For signal
processing, moving average filter, DC component removal, normalization, and peak detection by ‘local maxima’ extracting the respi-
ration indices (respiration count (RC), peak to peak interval time (PPI), respiratory rate (RR)) were performed using Matlab2015a.
The CBS was developed using 5 layers of conductive textile as shown below in Fig. 2(a). It had a sensor layer, a ground layer, and
three di-electric materials on the top, bottom, and in the center; separating the respiration sensor from the ground. The sensor and
ground layers were developed using the TROS-10 model (Ajin Electronics, Busan, ROK), which is made up of polyolefin, nickel, and
copper. The size of each layer was 3.5 cm x 2.5 cm. Fig. 2(b) shows the actual structure of CBS attached adjacent to our reference sensor
BIOPAC MP150 RSP100C (BIOPAC Systems Inc., CA, USA).
The PCB was developed to collect capacitance values as illustrated in Fig. 2(c). For Micro Controller Unit (MCU), STM32F103
(STMicroelectronics, Geneva, Switzerland) was used. The MCU had 16 ADC channels, a 10-bit ADC resolution, and its driving voltage
was 3.7 V. MPR121QR2 was used for converting analog to digital data. The MPR121QR2 (NXP, Eindhoven, Netherland) sensor has a

Capacitive Belt Sensor Microcontroller Unit Monitoring Application
Respiration signal - ADC Data Transfer ) C# Application
Measurement “1 (100Hz) (Bluetooth) (display, save)
|
¥
Moving DC i Extract
Average Fitter |—=>] component =] normatization J—o Peak betection § b - "op) pr
- (Local Maxima) N
(N=20) remove index
MATLAB (Signal processing)

Fig. 1. System architecture.

== Sensor layer (3.5 cm x 2.5 cm)

NI Ground layer (3.5 cm x 2.5 cm)

di-electric material (3.5 cm x 2.5 cm)

(a) The structure of capacitive belt sensor

Capacitance measurement system Bluetooth Configuration Button Data Input (Belt sensor)

On/off switch [ S S Ao G['
! |— MCU(STM32103F)

USB battery charger

Capacitive Belt sensor

(b) Respiration signal detection system (c) Capacitance measurement board

Fig. 2. Structure of the developed capacitive belt sensor attached adjacent to MP150 (BIOPAC) sensor.
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Fig. 3. The real-time display of respiration monitoring application.

resolution of capacitance between 0 and 2000 pico-Farad (pF). The capacitance data were sampled at 100 Hz and Bluetooth commu-
nication was used for transfer of data from PCB and PC monitoring application (baud-rate: 115200).

The monitoring application was developed using C# language as shown in Fig. 3. As shown, the application visualizes the real-time
raw data of capacitance values changing accordingly with each subject's respiration in a graph (x-axis: time (second), y-axis: capacitance
to digital converted value (CDC)) and the data can be saved in a text file including time stamp (yy-mm-dd-hh-mm-ss, yy: year, mm:
month, dd: day, hh: hour, mm: minutes, ss: seconds).

2.2. Signal processing

To calculate respiration indicators, moving average filter (window size 20) and noise removal were performed for data smoothing
using Matlab2015a as illustrated in Fig. 4. Local maxima algorithm was used for peak detection analysis after DC component removal
and normalization. Total respiration count (RC), peak to peak interval time (PPI), respiratory rate (RR), and error rate were calculated
based on peak point information.

Respiratory rate (RR) was calculated by equation (2) (Yang, Keller, Popescu, & Skubic, 2016).

N
RR:@ ZL (2)

where, I(n) refers to each peak to peak interval time, N the total respiration count.
Error rate between CBS and MP150 was calculated by equation (3).

PPlcys — PPI,
Error rate(%) :M x 100 3
PPlggr

2.3. Placement of capacitive belt sensor

For detection and measurement of the respiratory parameters during respiration at rest, CBS was placed around the chest, on the
fourth thoracic vertebra (T4) level as shown below in Fig. 5. CBS was located 2 cm laterally distanced from the xyphoid process, over the
left pectoralis major (PM) muscle. MP150 sensor was placed over the right PM muscle; both of the two sensors were equally distanced
from the midline, on the same T4 level. These two sensors were attached on a single elastic belt for simultaneous data collection and the
tightness of the belt around T4 level was adjusted by the same researcher for conditional conformity of the experiment.
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Fig. 5. Respiration detection by capacitive belt sensor on T4 level.

In this study, two-stage experiments were conducted. Experiment 1 (E1) was carried out for performance evaluation of CBS by
examining the correlation between CBS and MP150 in different static postures for reliability and accuracy. Experiment 2 (E2) was
performed to test the feasibility of CBS in differentiating posture-specific respirations. For the study, all subjects were asked to wear a
given dry-fit elastic shirt for equal contact force of CBS as the movement of different type of clothes can cause interference in the
capacitance output. Study purpose and procedures were adequately explained to the subjects and all participants signed the informed

consent form.

2.4.1. Sensor performance evaluation (E1)
Seven healthy young male subjects participated in the experiment (mean age: 26.75 + 2.71 yrs, height: 175.37 4+ 6.02 cm, Weight:
72 + 10.44 kg, BMIL: 23.31 + 2.21). General characteristics of the subjects are presented in Table 1. All subjects had no history of
respiratory disorders, cardiopulmonary diseases, related surgeries or medications, and experience of ventilation difficulties during the
past 6 months. For this study, respiration (at rest) data were collected simultaneously from CBS and MP150 for 3 min in 6 different static
postures (refer to E2 below). From the collected data, 3 respiratory parameters (RC, PPI, and RR) were analyzed. Pearson's correlation

analysis was conducted for all three of the parameters collected by the two sensors.
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Table 1

Subject characteristics.
Subject No. Gender Age Height (cm) Weight (kg) BMI

(Body Mass Index)

Subject 1 male 23 182 82 24.75
Subject 2 male 27 178 66 20.83
Subject 3 male 26 168 66 23.38
Subject 4 male 32 182 89 26.86
Subject 5 male 28 175 77 25.14
Subject 6 male 27 168 62 21.96
Subject 7 male 24 170 59 20.41
AVG 26.75 175.37 72 23.31
SD 2.71 6.02 10.44 2.21

2.4.2. Sensor feasibility in differentiating posture-specific respirations (E2)

The same 7 subjects performed both E1 and E2 consecutively on the same day. For both E1 and E2, respiration data were collected in
6 different posture conditions, which are representative of real-life postures: supine with neutral head position (P1), standing (P2),
sitting (P3), side lying (P4), supine with 45° cervical flexion (P5), supine with 45° cervical extension (P6). Postural conditions are
illustrated in Fig. 6. For P1, P2, P3 postures, subjects' head was positioned into the cervical neutral position by a physical therapist. All
subjects were then instructed to maintain the posture throughout the experiment. Verbal and tactile cues were provided by the therapist
when needed. For P2 posture, subjects were instructed to place their feet apart in alignment with the width of their pelvis (distance
between right and left anterior superior iliac spine (ASIS)). To help the subjects keep the same posture during the experiment, the space
between the 1st metatarsal head of the both feet was measured and marked on the floor. For P3 posture, the knee and hip joint in 90°
flexion was to be maintained with the trunk straight, against the back of the given chair. For P4 posture, a pillow was placed under the
head and another one between the legs to keep the spine straight. For P5 and P6, two pillows were placed under the scapula to make
cervical flexion and extension postures, respectively. Subjects’ passive cervical range of motion was tested prior to study and the
conditional postures (P5, P6) were positioned by the same physical therapist. Each of the 6 postures were maintained for 3 min with 1-
min resting time in between the conditions. The order of postural conditions was randomly selected for each subject. The first and last
30 s of the collected data were deleted to remove start/stop effects and the mid 2 min of respiration was used for analysis (Guan et al.,
2018; Min et al., 2014).

Supine (P1) Standing (P2)

Side lying (P4) Cervical Flexion (P53) Cervical Extension (P6)

Fig. 6. Six experimental posture conditions (E2).
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3. Results
3.1. Results of correlation analysis between CBS and MP150

3.1.1. Respiration count (RC)

Correlation of RC was found to be 100% consistent between CBS and MP150. Table 2 shows the numerical results of correlation
analysis on RC detected by the two sensors for 2 min of breathing (Guan et al., 2018). The average RCs in each posture were
20.86 + 7.49 (P1), 27.57 + 8.98 (P2), 26.14 + 10.62 (P3), 27 + 6.93 (P4), 21.43 + 5.71 (P5), and 18.71 + 6.29 (P6). The highest RC was
found in standing (P2) and the lowest in supine with cervical extension (P6), showing that standing caused hyperventilation compared
to supine position with the neck extended.

3.1.2. Peak to peak interval time (PPI)

The results of average PPI time in 6 conditional postures with CBS were 6.33 + 2.51 s (P1), 4.60 + 1.42 s (P2), 5.07 + 1.96 s (P3),
4.57 £1.05 s (P4), 5.79 + 1.66 s (P5) and 6.91 + 2.83 s (P6), respectively (Table 3). The highest PPI time was found in supine with
cervical extension (P6) and the lowest in side-lying (P4), showing a slowed respiration in supine position with the neck extended.
Average PPIs with MP150 in 6 postures were 6.33 & 2.44 s (P1), 4.60 & 1.42 s (P2), 5.06 £+ 1.96 s (P3), 4.58 +£ 1.06 5 (P4),5.76 £ 1.61 s
(P5) and 6.90 + 2.83 s (P6), respectively (Table 4). Highly similar results were found in both of the sensors. Bland-Altman plot showing
the difference of PPI time in each posture in comparison between CBS and MP150 is in Fig. 7.

The results of Pearson's correlation analysis on PPI in each posture between CBS and MP150 are shown in Table 5 The average R?
values in 6 postures were 0.91 + 0.06 (P1), 0.90 + 0.04 (P2), 0.90 + 0.04 (P3), 0.92 + 0.03 (P4), 0.91 £ 0.05 (P5), and 0.89 + 0.03 (P6)

Table 2

Results of respiration count comparison between CBS and MP150 during 2-min breathing.
Subject No. P1 P2 P3 P4 P5 P6 Consistency
Subject 1 21 23 25 36 21 16 100%
Subject 2 19 25 21 23 18 17 100%
Subject 3 24 28 27 26 25 22 100%
Subject 4 25 31 30 26 23 25 100%
Subject 5 13 16 14 22 19 9 100%
Subject 6 33 45 47 37 31 27 100%
Subject 7 11 25 19 19 13 15 100%
AVG 20.86 27.57 26.14 27 21.43 18.71
SD 7.49 8.98 10.62 6.93 5.71 6.29

P1: supine, P2: standing, P3: sitting, P4: side lying, P5: cervical flexion supine, P6: cervical extension supine.

Table 3

Results of average peak to peak interval time in 6 postures with CBS (unit: second).
Subject No. P1 P2 P3 P4 P5 P6
Subject 1 5.27 + 1.62 4.81 + 0.69 4.48 + 1.87 3.13 +£0.59 5.22 +1.49 6.74 +1.21
Subject 2 6.34 £ 0.72 4.92 +0.77 5.61 £+ 0.90 5.13 £1.07 6.64 + 0.83 7.11 £0.94
Subject 3 4.87 +£0.88 4.10 £+ 0.51 4.18 £+ 0.40 4.5 + 0.66 4.54 £+ 0.55 5.03 + 0.68
Subject 4 4.72 + 0.35 3.81 £ 0.25 4.04 + 0.36 4.64 + 0.39 5.10 + 0.58 4.70 + 0.42
Subject 5 9.13 +2.40 7.29 +£0.70 8.74+1.13 5.41 £ 0.62 6.54 +£1.93 12.68 &+ 1.60
Subject 6 3.61 £ 0.52 2.64 £ 0.40 2.54 £ 0.42 3.28 £ 0.35 3.74 £0.39 4.50 + 0.81
Subject 7 10.42 £+ 1.56 4.67 + 0.90 5.95 + 0.86 5.93 +1.15 8.77 + 2.40 7.63 + 1.40
AVG 6.33 4.60 5.07 4.57 5.79 6.91
SD 2,51 1.42 1.96 1.05 1.66 2.83

P1: supine, P2: standing, P3: sitting, P4: side lying, P5: cervical flexion supine, P6: cervical extension supine.

Table 4

Results of average peak to peak interval time in 6 postures with MP150 (unit: second).
Subject No. P1 P2 P3 P4 P5 P6
Subject 1 5.30 £ 1.59 4.81 +£0.74 4.50 + 1.82 3.12 £ 0.55 5.16 £ 1.33 6.67 +£1.18
Subject 2 6.44 + 0.86 4.87 +£0.71 5.54 + 0.64 5.13 +£ 0.86 6.63 + 0.92 7.25 + 0.89
Subject 3 4.87 £ 0.81 4.10 £ 0.44 4.17 £ 0.33 4.50 + 0.61 4.54 + 0.51 4.97 + 0.60
Subject 4 4.72 £ 0.64 3.82 £0.49 3.99 + 0.46 4.63 £ 0.32 5.14 £ 0.66 4.70 £ 0.48
Subject 5 9.27 £+ 2.62 7.32 £ 0.85 8.72 £ 0.86 5.43 £ 0.59 6.56 + 1.81 12.67 +1.72
Subject 6 3.63 £0.23 2.64 £0.33 2.54 £ 0.35 3.29 £ 0.22 3.75 £ 0.30 4.51 + 0.68
Subject 7 10.10 £+ 0.91 4.66 £ 0.57 5.98 + 0.66 5.98 + 1.08 8.59 +£1.92 7.56 +1.18
AVG 6.33 4.60 5.06 4.58 5.76 6.90
SD 2.44 1.42 1.96 1.06 1.61 2.83

P1: supine, P2: standing, P3: sitting, P4: side lying, P5: cervical flexion supine, P6: cervical extension supine.
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Fig. 7. Bland-Altman plot showing the difference of peak to peak interval time of all subjects in each posture between CBS and MP150. The solid line

indicates the mean value of the difference and the dotted lines above and below denote standard deviation (95% CI).

Table 5
Correlation analysis result of peak to peak interval time between CBS and MP150.
Subject No. Value P1 P2 P3 P4 P5 P6
Subject 1 R? 0.95%* 0.92%* 0.94** 0.95%* 0.95%* 0.89**
p-value 0.00 0.00 0.00 0.00 0.00 0.00
Subject 2 R? 0.87** 0.87%* 0.95%* 0.89** 0.92%* 0.85%*
p-value 0.00 0.00 0.00 0.00 0.00 0.00
Subject 3 R? 0.97%* 0.91%* 0.85** 0.96** 0.92%* 0.92%*
p-value 0.00 0.00 0.00 0.00 0.00 0.00
Subject 4 R? 0.80** 0.87%* 0.89** 0.93** 0.82%* 0.87**
p-value 0.00 0.00 0.00 0.00 0.00 0.00
Subject 5 R? 0.96** 0.97** 0.96** 0.95%* 0.98** 0.94*
p-value 0.00 0.00 0.00 0.00 0.00 0.03
Subject 6 R? 0.96** 0.87%* 0.87** 0.89** 0.87** 0.94**
p-value 0.00 0.00 0.00 0.00 0.00 0.00
Subject 7 R? 0.90** 0.96** 0.91** 0.91** 0.94** 0.88**
p-value 0.00 0.00 0.00 0.00 0.01 0.00
AVG R2 0.91 0.90 0.90 0.92 0.91 0.89

P1: supine, P2: standing, P3: sitting, P4: side lying, P5: cervical flexion supine, P6: cervical extension supine.

Significance level: **P-value < 0.01, *P-value < 0.05.

respectively, showing a very high correlation (p < 0.05).

3.1.3. Respiratory rate (RR)
As presented in Table 6, the results of average RR detected by CBS in 6 postures were 10.46 + 3.81 (P1), 13.84 + 4.54 (P2),

13.31 + 5.46 (P3), 13.60 + 3.59 (P4), 11.56 + 2.82 (P5), and 10.12 + 3.13 (P6), respectively. Average RRs detected by MP150 were
10.41 + 3.71 (P1), 13.82 + 4.50 (P2), 13.28 + 5.44 (P3), 13.51 + 3.62 (P4), 11.49 + 2.83 (P5), and 10.16 + 3.11 (P6), respectively
(Table 6). In both sensors, the highest RR was found in standing (P2) and the lowest in supine with the neck extended (P6). Fig. 8 shows
the result of correlation analysis on RR between the two sensors R? = 0.99, p-value = 0.00).
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Table 6

Results of average respiratory rate detected by CBS and MP150.
Subject No. Pl P2 P3 P4 P5 P6

(CBS/ MP150) (CBS/ MP150) (CBS/ MP150) (CBS/ MP150) (CBS/ MP150) (CBS/ MP150)

Subject 1 11.61/11.55 12.19/12.23 14.38/14.26 19.28/19.28 12.90/13.07 10.83/11.01
Subject 2 9.08/8.99 11.99/12.03 10.44/10.44 11.70/11.52 11.86/11.54 11.05/11.05
Subject 3 12.10/12.06 14.32/14.26 13.95/13.92 13.08/13.02 12.84/12.84 11.56/11.66
Subject 4 12.27/12.42 15.28/15.44 14.45/14.70 12.51/12.50 11.38/11.34 12.35/12.38
Subject 5 6.42/6.37 7.77/7.77 6.47/6.45 10.71/10.63 9.53/9.35 4.27/4.28
Subject 6 16.40/16.05 22.63/22.47 23.74/23.60 17.95/17.81 15.69/15.54 13.23/13.10
Subject 7 5.33/5.43 12.74/12.52 9.77/9.62 9.99/9.80 6.75/6.72 7.57/7.61
AVG 10.46/10.41 13.84/13.82 13.31/13.28 13.60/13.51 11.56/11.49 10.12/10.16
SD 3.81/3.71 4.54/4.50 5.46/5.44 3.59/3.62 2.82/2.83 3.13/3.11

P1: supine, P2: standing, P3: sitting, P4: side lying, P5: cervical flexion supine, P6: cervical extension supine.
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Fig. 8. The result of correlation analysis on respiratory rate between CBS and MP150.

3.2. Results of posture-dependent respiration pattern change detection

3.2.1. Morphological difference captured by CBS and MP150

The raw signal data of RR collected by CBS and MP150 in each of the six postural conditions are shown in Fig. 9. Both the two sensors
were able to detect the difference and changes of RR as the subjects changed their postures. Probability analysis was performed to
calculate the sensors’ capability of detecting a certain posture based on RR signal (Schulz, Bar, & Voss, 2015). The results showed that
CBS was able to differentiate P1 from other postures for 85%, P2 for 82%, P3 for 77%, P4 for 82%, P5 for 74%, and P6 for 82%. The
detection rates of MP150 were 88%, 82%, 77%, 82%, 74%, and 85%, respectively.

3.2.2. Summarized respiratory pattern difference in each posture

All the three respiratory parameters (RC, PPI, RR) showed to be noticeably changing in different postures. Fig. 10 visualizes the
changes detected by CBS and the analyzed results under 6 different postural conditions in this study. For CBS, the average RCs were
20.86 + 7.49 (P1), 27.57 + 8.98 (P2), 26.14 + 10.62 (P3), 27 + 6.93 (P4), 21.43 + 5.71 (P5), and 18.71 + 6.29 (P6); the average PPIs
were 6.33 + 2.51 (P1), 4.60 + 1.42 (P2), 5.07 &+ 1.96 (P3), 4.57 + 1.05 (P4), 5.79 + 1.66 (P5), and 6.91 + 2.83 (P6); the average RRs
were 10.46 + 3.81 (P1), 13.84 + 4.54 (P2), 13.31 £ 5.46 (P3), 13.60 + 3.59 (P4), 11.56 + 2.82 (P5), and 10.12 + 3.13 (P6).

The patterns of RC and RR were similar as they were both referring to the number of breaths taken within a given time; 2 min and
1 min, respectively. The highest RR was detected in standing posture (P2). This could mean that standing is relatively the most energy-
consuming, difficult, and uncomfortable posture among the six postures and thus it increases respiration rate. On the other hand, the
lowest RR was in cervical extension supine (P6), underpinning the theory that cervical extension opens up the airway, making inhalation
easier in a relaxed pattern. RRs detected in side lying and sitting were found to be different but not as significant. RR was noticeably
different between sitting and cervical flexion supine. Breathing with the neck flexed reduces the air intake because it narrows the
airway. Thus, sitting posture with neutral head position had significantly higher RR compared to that of cervical flexion supine.



D.G. Kim et al. Smart Health 16 (2020) 100106

4 ——CBs 1
MP150

@«

Nommalized value
©
Nomalized value
o
Nommalized valug
o

&
o
—

0 20 40 60 80 100 120 0 0 40 60 80 100 120 0 20 40 60 80 100 120
Time(s) Time(s) Time(g)
(P1) (P2) (P3)
1 —CBS 1 1
MP150
o 05 o 05 » 05
3 2 2
@ ® B
> > »
s
L) F) 30
3 3 B
E E E
a a s
= =z z
0.5 0.5 05
1 -1 1
[} 20 40 60 a0 100 120 0 0 40 6D 80 100 120 0 20 40 60 80 100 120
Time(s) Time(s) Time(s)
(P4} (P5) (P6)

Fig. 9. Morphological overlay comparison of moving average filtered respiratory rate raw data between CBS and MP150 (subject 3). (P1: supine, P2:
standing, P3: sitting, P4: side lying, P5: cervical flexion supine, P6: cervical extension supine).

The summarized result shown in Fig. 10 was drawn based on within-subject comparison results, considering individual charac-
teristics and difference in respiration pattern. Summed average values of all 7 subjects were used for analysis.

3.2.3. Error rate of CBS

The error rate of CBS was examined using RR values from each posture. The average error rate was 1.14 + 0.70 (P1), 0.67 + 0.57
(P2), 0.74 £ 0.65 (P3), 0.79 + 0.71 (P4), 1.08 + 0.96 (P5), and 0.70 + 0.55 (P6), respectively (Table 7). The error rate of the proposed
sensor was less than 2% for each posture.

4. Discussion

In this paper, an advanced version of our first-generation analog circuit-based capacitive textile belt sensor (Min et al., 2014) was
studied. With the aim to find solutions for real-life breathing pattern monitoring with a comfortable and practical sensor, an easy-wear
CBS was developed with smaller hardware, higher resolution, and wireless function. Its accuracy and feasibility for detecting respiration
changes in 6 representative postures in daily living were conducted and three respiration parameters (RC, PPI, RR) were compared
between CBS and MP150.

The performance and accuracy of our proposed sensor were confirmed; the results of correlation analysis between the two sensors
showed a very high agreement, showing 89 to 100 percent consistency in all three of the respiratory parameters (RC: 100%, PPIL:
R? > 0.89, RR: R% > 0.99) analyzed in this paper. Although our previous study examined and confirmed the precision of our first
generation capacitive textile belt sensor for respiration monitoring (Min et al., 2014), the study was conducted in sitting posture and the
belt was worn on the abdomen (navel area). Therefore, the present study aimed to examine the reproducibility of our sensor under
various yet more natural postures considering regular daily activities and on a different sensor placement (T4) to detect the circum-
ference changes caused by chest expansions during respirations at rest. Results of this study validated the suitability of T4 for belt-type
sensor location area to monitor daily respiration.

The highest RC during 2 min of breathing was found in standing (27.57 + 8.98), then in the decreasing order: side lying (27 + 6.93),
sitting (26.14 + 10.62), cervical flexion supine (21.43 + 5.71), neutral supine (20.86 + 7.49), and cervical extension supine
(18.71 £ 6.29). These results agreed with that of Guan et al.‘s study with healthy adults where the highest breathing rate was monitored
in standing posture (20 bpm), then in sitting (18 bpm), and the lowest in supine position (15 bpm) (Guan et al., 2018; Hwangbo, Lee,
Park, & Han, 2017). RCs in three other postures (side lying, cervical flexion supine, and extension supine) were not comparable because
they were not tested in other studies.

The results of PPI values in descending numerical order were cervical extension supine posture (6.91 + 2.83), neutral supine
(6.33 & 2.51), in cervical flexion supine (5.79 + 1.66), in sitting (5.07 + 1.96), in standing (4.60 + 1.42), and in side lying (4.57 4 1.05).
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Table 7

Error rate of respiratory rate detected by CBS in 6 conditional postures (%).
Subject No. P1 P2 P3 P4 P5 P6
Subject 1 0.54 0.35 0.80 0.01 1.29 1.72
Subject 2 1.07 0.38 0.02 1.54 2.76 0.08
Subject 3 0.31 0.43 0.23 0.45 0.02 0.89
Subject 4 1.18 1.03 1.68 0.13 0.39 0.24
Subject 5 0.74 0.03 0.32 0.73 1.85 0.42
Subject 6 2.16 0.72 0.57 0.74 0.92 0.98
Subject 7 1.97 1.76 1.57 1.93 0.35 0.55
AVG 1.14 0.67 0.74 0.79 1.08 0.70
SD 0.70 0.57 0.65 0.71 0.96 0.55

P1: supine, P2: standing, P3: sitting, P4: side lying, P5: cervical flexion supine, P6: cervical extension supine.

The highest PPI was found in supine with the neck extended (P6) and the lowest in side-lying (P4), showing that respiration slowed
down in P6 posture. Normally, RC and PPI patterns are inversely related, because higher number of RC naturally causes decreased PPI
time. However, there were few outliers in the results (Fig. 7). These may have been due to different physical characteristics and
breathing patterns of each subject. The subject inclusion criteria for this study did not take account of the lifestyles of participants such
as the amount of their daily physical exercise, smoking, eating, sleeping, and etc. Another factor that may have caused the outliers could
be personal preference of certain body postures. For example, side-lying postures can be preferred over supine depending on a person's
preferred sleeping postures or just from a habitual posture, which makes the person feel more comfortable in. Comfortable postures can
make a person's breathing rate slow down and these postures may be different for every individual.

RR is the frequency of breaths taken within a certain amount of time, usually within 1 min (Krehel et al., 2014). Thus, the results of
RR were similar to those of RC. RR is known to have high correlation with gas composition in the blood. Normal range of healthy adult
RR is between 12 and 18 breaths per minute at rest. Faster breathing can occur when blood oxygen level is low, and any abnormality in
RR can mirror ventilation malfunctions. The results of RR in this study showed to have exactly the same pattern with RC; the highest rate
was during standing (13.84 + 4.54), then in the decreasing order: side lying (13.60 + 3.59), sitting (13.31 + 5.46), cervical flexion
supine (11.56 + 2.82), neutral supine (10.46 + 3.81), and cervical extension supine (10.12 =+ 3.13). These results underpin the previous
findings which stated that supine position increases blood flow in the pulmonary circulation and consequently decreases the volume of
gas inhaled into the thoracic cavity, reducing inhalation (Hwangbo et al., 2017). As all six postures were kept static throughout the
experiment, the RRs detected by our sensor were within the normal range, confirming the performance and feasibility of our sensor.

This means that standing is relatively the most energy-consuming, difficult, and uncomfortable posture affecting respiration rate to
increase. Subjects were breathing more frequently within the observed time range during standing. This agrees with the results of the
previous studies that reported oxygen uptake decreased the most in standing or trunk forward leaning, then in sitting, and lastly in
supine posture, meaning that the highest oxygen uptake was observed in the supine posture (Hwangbo et al., 2017). In the present study,
supine posture was divided into three neck positions to examine the differences considering people's resting or sleeping postures. The
results showed that supine posture with cervical extension of 45° seemed to be the most effective way to breathe. Moreover, supine with
cervical flexion of 45° had the highest RR and RC among the 3 different supine postures. Various types of supine postures especially with
different neck postures are directly related to sleep apnea and hypopnea due to airway obstruction (Lee et al., 2018). As our sensor was
able to detect these differences, potential application in sleep apnea monitoring, respiratory disease prevention, and early detection of
diagnostic symptoms has been confirmed.

A limitation of this study was small sample number and gender-oriented design, making it inappropriate to generalize the results.
However, the results may still have significance in laying the foundation for possibility to utilize and extend the application of
capacitance belt sensor to detect and monitor posture-dependent respiration changes. Initially, we intended to compare 8 postures
including prone and right side-lying postures. However, neither of the two sensors (CBS and MP150) used in this study were able to
detect stable breathing signals in prone and right side lying for analysis. This may be due to the sensors’ location and mechanism of
signal detection; both sensors were placed on the chest (2 cm laterally distanced from xyphoid process, on pectoralis major muscle) and
breathing pattern was detected according to the resistance against the sensor caused by chest circumference expansion and diminution
during respiration.

In our future studies, we plan to add a sensor on the back of the trunk to monitor respiration changes in prone and also during
dynamic daily activities. We will try finding the optimum sensor placement area by comparing sensor performance in various locations
of the human body. Studies on subjects with a wider range of age and patients with diverse pulmonary symptoms are also needed.

5. Conclusion

The newly developed wearable capacitive belt sensor was confirmed to have similar functions and accuracy to those of a reputational
commercial sensor in detecting respiration count, peak to peak interval, and respiratory rate during respiration at rest in 6 different
postures that are considered representative of daily activities. It is feasible to apply the proposed sensor for detecting and analyzing the
changes in posture-dependent respiration.
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